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Abstract 

Weather forecasts started from realistic initial conditions are used to diagnose the large 

warm and dry bias over the United States Southern Great Plains simulated by the GFDL 

climate model. The forecasts exhibit biases in surface air temperature and precipitation 

within 3 days which appear to be similar to the climate bias. With the model simulating 

realistic evaporation but underestimated precipitation, a deficit in soil moisture results 

which amplifies the initial temperature bias through feedbacks with the land surface. The 

underestimate of precipitation is associated with an inability of the model to simulate the 

eastward propagation of convection from the front-range of the Rocky Mountains and is 

insensitive to an increase of horizontal resolution from 2° to 0.5° latitude. 
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1. Introduction 

Two of the most important simulated variables of a climate model are the surface air 

temperature and precipitation. Climate models exhibit important biases relative to 

observations in both quantities yet an understanding of the causes of the biases is often 

lacking. For example, consider the summertime bias in surface air temperature and 

precipitation over North America (Figures 1a-b) that results when the climate model of 

the National Oceanic and Atmospheric Administration’s Geophysical Fluid Dynamics 

Laboratory (GFDL) known as AM2 is integrated with observed sea surface temperatures. 

Prominent is the overestimation of surface air temperature in the south central United 

States with peak values in excess of 6K. For precipitation, there are large underestimates 

along the coast of the Gulf of Mexico and over Florida as well as in the central United 

States. Over the Southern Great Plains, AM2 simulates about 0.7 mm day-1 or 25% of the 

seasonal mean. 

Understanding the cause of this bias in the region of the Southern Great Plains is difficult 

because of feedbacks between the land surface and atmosphere that are known to be 

prominent in this and many other models [Koster et al., 2004]. For example, reduced 

precipitation may result if evaporation is suppressed due to below normal soil moisture. 

However, below normal precipitation may also be the cause of the below normal soil 

moisture. Furthermore, below normal soil moisture may lead to above normal surface air 

temperature as the vegetation resists giving up its moisture and more of the radiative gain 

of the surface is balanced by sensible instead of evaporative heat loss. Having a means to 
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separate initial errors from amplifying feedbacks would be useful. 

For this reason, the approach of weather forecasting is attractive. If the state of the 

atmosphere and land model can be initialized with observations, it may be possible to 

diagnose the process behind the drift towards a biased climate [Phillips et al., 2004]. For 

example, because of the several week timescale associated with soil moisture, it is 

possible to diagnose errors in precipitation and radiation in a weather forecasting mode 

before they can cause the soil to loose an appreciable amount of water. Here one month 

of 3 day weather forecasts with AM2 are examined and compared to observations from 

the Atmospheric Radiation Measurement program [Ackerman and Stokes, 2003] at its 

Southern Great Plains site to understand AM2’s bias in temperature and precipitation. 

2. Observations and procedures 

2.1 ARM Observations 

The period of simulation coincides with an intensive observing period conducted by 

ARM from 19 June to 17 July 1997. Observations available include those of surface 

radiation, sensible and latent heat fluxes, surface air temperature and other meteorology 

from about two dozen stations. Surface precipitation is inferred from radar observations. 

Estimates of the vertical profile of clouds are retrieved from the cloud radar and lidar at 

the ARM central facility. Estimates of clouds and the top-of-atmosphere (TOA) radiation 

budget from geostationary satellite observations are also available. All observations are 
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averaged over an area within a circle of diameter 360 km centered on the ARM central 

facility at 36°N 97°W. 

2.2 AM2 and weather forecast methods 

AM2 is a climate model with horizontal resolution of 2.0° latitude by 2.5° longitude and 

24 vertical levels; convection is represented with the Relaxed-Arakawa Schubert 

parameterization. Further details are available from GFDL GAMDT [2004]. Three day 

weather forecasts with AM2 are started every day in the period at 00Z, 06Z, 12Z, and 

18Z; but since results are not highly sensitive to the starting hour, the results from the 

00Z forecasts are emphasized. For temperature, water vapor specific humidity, horizontal 

winds, and surface pressure, AM2 is initialized with ERA-40 reanalysis data from the 

European Centre for Medium Range Weather Forecasts [Simmons and Gibson, 2000]. 

The analysis is transformed to the native grid of AM2 accounting for its representation of 

the surface orography [Boyle et al., 2005]. No data assimilation is performed. Root-mean 

square errors of ERA-40 relative to ARM observations in this period are less than 1K for 

temperature and approximately 50% of the temporal standard deviation of moisture [Xie 

et al., 2004]. The land model is initialized with output of a separate ‘stand-alone’ 

integration driven with the history of surface air temperature, winds, humidity and 

radiation from ERA-40 supplemented by observed daily mean precipitation. 

Results from hours 12 to 36 of each forecast are emphasized since it is in this time range 

that the model has past the initials shocks due to the use of a foreign analysis but that the 
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model’s large-scale state has not diverged strongly from observations. Results are 

interpolated to the ARM site using distance-weighted averaging of data from the 4 closest 

grid-boxes.  

3. Results 

3.1 Weather forecast biases 

A weather forecasting approach can be useful in diagnosing a climate bias if the forecasts 

show evidence of the bias. In forecasts hours 12 to 36, AM2 overestimates the surface air 

temperature primarily through too large daily maxima. The deviation from observation is 

~2K early in the period and ~5K late in the period (Figure 2a). Averaged over the entire 

period, AM2’s bias is 3.2K – a bias of the same sign as is AM2’s climate but only ~50% 

of its amplitude. For precipitation (Figure 2b), AM2 exhibits a serious underestimate 

similar to its climate with only 1.3 mm day-1 averaged over the period compared to 4.0 

mm day-1 in ARM observations. The timing of the events that the model does simulate is 

not too bad – the events on 23 June, 26 June, and 4 July are well predicted in time. 

However, not only is precipitation too small in the events that do occur but some events 

are missed entirely. A dry bias of 1 g kg-1 in surface moisture in ERA-40 may partly 

cause the lack of precipitation at the end of the period.  

To confirm the large-scale nature of errors, Figures 1c-d display the temperature and 

precipitation errors over North America from forecast hours 0 to 24. Positive forecast 

temperature biases occur over the central United States in a pattern somewhat similar 
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to the climate bias but with reduced amplitude. For precipitation the similarity between 

forecast and climate biases is greater with common features that include underestimates 

of precipitation over Florida, the Gulf Coast, and the central United States. This suggests 

that the reasons for the precipitation error over North America in summer are strong 

enough that they are not hidden by any adjustments of AM2 to the analysis of a different 

model. 

3.2 Surface energy balance 

Examination of the surface energy balance may help to understand why approximately 

50% of the climate bias in temperature is present by hours 12 to 36. Averaged over the 

period, AM2 overestimates the shortwave radiation absorbed by the surface by 43 W m-2 

(Table 1). The shortwave error is 23 W m-2 larger on wet days relative to dry days, 

suggesting that AM2’s lack of precipitation-generating processes also results in an 

underestimate of clouds and their radiative effects. Satellite data also shows that the bias 

of TOA shortwave radiation is larger on wet days, while there is little bias on dry days. 

The differences between the surface and TOA shortwave budget suggest an 

underestimate of the amount of solar radiation absorbed within the atmosphere – perhaps 

due to an underestimate of absorbing aerosol. For outgoing longwave radiation, the 

model error is also greater on wet days. Comparison of AM2’s cloud amounts to both 

satellite and ARM cloud radar observations provides direct evidence that the model 

underestimates the amount of cloud on both wet and dry days with a larger error on wet 
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days. 

AM2’s overestimate of the surface net shortwave radiation is balanced by a 

corresponding large overestimate in the sensible heat flux with smaller differences in the 

latent and surface net longwave heat fluxes. The ARM observations of sensible and latent 

heat flux might contain biases because of biased sampling of the region’s surface types. 

However, prior work suggests that the biases are about 10 W m-2 for a multi-week 

summertime average [Doran et al., 1998], smaller than the differences between AM2 and 

the observations. 

Consequently, a plausible explanation is that too much heating of the surface by solar 

radiation may cause AM2’s anomalously large daytime surface temperatures in the first 

36 forecast hours. The larger than observed surface temperature would then promote 

larger than observed sensible heat flux and net longwave cooling. Consistent with this 

hypothesis, the surface air temperature bias is somewhat larger on wet days (3.5K vs. 

2.8K) as is the surface solar radiation bias.  

3.3 Climate drift 

Because only 50% of the climate bias in surface temperature is present by forecast hours 

12 to 36, further increases in the bias must appear at later forecast times. Figure 3a shows 

the 24-hour running mean surface air temperature from the observations and hours 0 to 

24, 24 to 48, and 48 to 72 of the forecasts. A warm bias of 2.2K present in the first 24 
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hours grows to 4.1K in day 3 forecasts. 

The growth of the temperature bias appears to be due to positive feedbacks with the land-

surface. Since evaporation in the AM2 forecasts is fairly close to observed, the 

underestimate of precipitation leads to strong reductions in soil moisture (Figure 3b). The 

mean soil moisture is 11.5 kg m-2 on forecast day 3 as compared to 14.0 kg m-2 on day 1. 

The consequence of a drier soil is a reduction of the ability of the surface to use solar 

heating to evaporate water. Instead, solar heating is used to raise the surface temperature.   

To display the connection between surface temperature and soil moisture, the forecast 

which began on 19 June is integrated for 30 days (short-long dashed lines in Figure 3). 

AM2 looses so much soil moisture that by 5 July there is no water left in the soil. This is 

consistent with the 14 days needed for the 2.2 mm day-1 bias in precipitation minus 

evaporation to deplete the 30 mm of soil moisture present at the start of the period. About 

this time, the overestimate of surface air temperature grows to in excess of 8K. For 

precipitation, this integration yields only 0.3 mm day-1 and no 3-hour period after 1 July 

has a precipitation rate in excess of 1 mm day-1. The reduction of precipitation in this 

single integration relative to that in forecast hours 12 to 36 is consistent with the positive 

feedbacks between soil moisture and precipitation diagnosed in this region by Koster et 

al. [2004]. 

3.4 Diurnal aspects of precipitation variability 

The hours of peak precipitation for the three largest precipitation events that occur on 24, 
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26, and 30 June (Fig. 2) are 3 am, 3 am, and 9 pm local time, respectively. Indeed, the 

nocturnal maximum of summer precipitation is a unique feature of the U. S. Great Plains 

[Dai et al., 1999]. A composite diurnal cycle of ARM observations for this period 

displays a strong nocturnal peak, whereas the forecasts with AM2 show little diurnal 

variability with too little precipitation at all hours of the day (not shown).  

An aspect of the nocturnal maximum in precipitation is that it appears to be associated 

with coherent eastward propagating convective episodes [Carbone et al., 2002]. These 

episodes are initiated near sunset by convection over the eastern edge of the U. S. Rocky 

Mountains (near 105°W). The convection then propagates eastward reaching the 

longitude of the ARM Southern Great Plains site (96°W) near 3 am local time. Visual 

inspection of geostationary satellite infrared imagery suggests that the precipitation 

events on 24, 26, and perhaps 30 June were associated with propagating episodes. 

Climatological aspects can be displayed by plotting latitudinal averaged precipitation as a 

function of time of day and longitude. Figure 4b illustrates the composite of 25 years of 

May to August precipitation from the North American Regional Reanalysis (NARR) 

[Mesinger et al., 2006]. Composites based upon radar observations of precipitation show 

similar features. AM2 composites (Figure 4c) lack propagating episodes although 

convection at sunset is present at the eastern edge of the Rocky Mountains. This 

convection is a response to upslope flow and ascent which is induced by diurnal heating 

over sloped terrain; these large-scale features and the associated low-level jet over the 
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Southern Great Plains are represented well by AM2 [Jiang et al., 2006a]. 

One possible cause for the underestimate of nocturnal precipitation in AM2 is that the 

horizontal resolution of the model is too coarse. However, short-range weather forecasts 

for this period with 1° resolution did not increase precipitation. Furthermore, climate 

integrations of AM2 at 1° and 0.5° resolution exhibit no reduction in the Southern Great 

Plains bias of surface temperature and precipitation (not shown). At 0.5° resolution, more 

precipitation occurs at the edge of the Rockies with weak hints of propagation but no 

downstream development (Figure 4d). This suggests that either the physics is in error, or 

that even finer resolution is needed, or both. 

4. Discussion 

The overestimate of surface air temperature and underestimate of precipitation that the 

GFDL climate model AM2 simulates over the Southern Great Plains is present in only 

the first few days of its weather forecasts started with the model. The initial overestimate 

of surface temperature appears to be due to an overestimate of surface solar radiation. 

The primary difference between AM2’s forecasts and its climate integrations is that the 

temperature bias is smaller in the forecasts. The larger temperature bias in climate results 

from the land-surface feedbacks that are the consequence of the underestimate of 

precipitation. Thus forecasts have shown that the precipitation bias is not primarily the 

result of land surface feedbacks but is mostly present before these feedbacks can operate. 

Without increased precipitation, the simulation of summertime climate over the 
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Great Plains in the GFDL climate model will continue to exhibit a detrimental warm 

bias. Effort should be focused on the simulation of the propagating episodes which 

appear to contribute the majority of nocturnal precipitation [Jiang et al., 2006b]. Prior 

research with regional models that have resolution finer than 0.5° latitude indicates that 

the simulation of propagating episodes can be quite difficult and sensitive to the 

convection parameterization [Davis et al., 2003; Liang et al., 2004]. At the lower 

resolution of climate models, models with the correct phase to the diurnal cycle tend to 

significantly underestimate the amount of precipitation [Zhang, 2003; Xie et al., 2004]. 

Tests of AM2 at 1 and 2° resolutions with modified or alternate convection 

parameterizations not detailed here do not significantly increase nocturnal precipitation. 

One possibility is that the lack of AM2’s omission of parameterized downdrafts and 

associated cold pool dynamics (which has not been tested) is at fault. Further work is 

needed to understand the reasons for AM2’s underestimate of precipitation. 
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Table 1 

Components of the surface and TOA energy budgets for the period 19 June to 17 July 

from ARM observations (“Obs”) and hours 12 to 36 of AM2 forecasts. The wet periods 

are defined as the four intervals of 00Z 23 June to 00Z 1 July, 12Z 3 July to 00Z 5 July, 

00Z 9 July to 12Z 12 July, and 00Z 15 July to 00Z 17 July. The dry periods are all of the 

non-wet periods between 19 June and 17 July. 

    
       
Component (W m-2) All Periods Wet Periods Dry Periods 
       
Surface Energy Budget Obs AM2 Obs AM2 Obs AM2 
       
Sensible Heat Flux 36 81 36 82 36 80 
Latent Heat Flux 114 99 108 98 120 100 
Net Shortwave Radiation 228 271 210 265 247 279 
Net Longwave Radiation -64 -81 -56 -76 -73 -87 
       

TOA Energy Budget      
       
Net Shortwave Radiation 365 383 349 378 385 388 
Outgoing Longwave Radiation 263 276 246 268 283 285 
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Figure 1. (a and b) The climate bias (model minus observation) for June-July-August 2-
meter temperature and precipitation of AM2. Observations are from NARR [Mesinger et 
al., 2006) for temperature and Xie and Arkin [1997] for precipitation. The symbol “X” 
indicates the location of the ARM Southern Great Plains site. (c and d) The forecast bias 
for 2-meter temperature and precipitation of AM2 forecasts for hours 0 to 24 for the 
period 19 June to 17 July 1997. Observations are from the NARR for temperature and 
GPCP for precipitation [Huffman et al., 1997]. 
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Figure 2. Temperature at 2 meters (a, units: Kelvin) and precipitation (b, units: mm day-1) 
from ARM observations (thick lines) and hours 12 to 36 of AM2 forecasts (thin lines) at 
the Southern Great Plains site. 
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Figure 3. 24-hour running mean temperature (a, units: Kelvin) and soil moisture (b, units: 
kg m-2) from ARM observations (thick line) and AM2 forecasts for hours 0 to 24 (solid 
line), hours 24 to 48 (dashed line), and hours 48 to 72 (dotted line) at the Southern Great 
Plains site. Also shown are the temperature and soil moisture from a single 30 day 
forecast which begins on 19 June (short-long dashed line). 
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Figure 4. Diurnal cycles of summertime (May through August) precipitation averaged 
from 35-45°N from the NARR (b) and AM2 at 2° (c) and 0.5° (d) resolution. The diurnal 
cycles are plotted as a function of longitude with the mean surface elevation (units: m) 
displayed in panel (a). The composites are of 25 years of reanalysis data and of more than 
10 years of AM2 integrated in climate mode at both resolutions. 
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